Microbial production of advanced biofuels

Concerns over climate change have necessitated a rethinking of our transportation infrastructure. One possible alternative to carbon-polluting fossil fuels is biofuels produced by engineered microorganisms that use a renewable carbon source. Two biofuels, ethanol and biodiesel, have made inroads in displacing petroleum-based fuels, but their uptake has been limited by the amounts that can be used in conventional engines and by their cost. Advanced biofuels that mimic petroleum-based fuels are not limited by the amounts that can be used in existing transportation infrastructure but have had limited uptake due to costs. In this Review, we discuss engineering metabolic pathways to produce advanced biofuels, challenges with substrate and product toxicity with regard to host microorganisms and methods to engineer tolerance, and the use of functional genomics and machine learning approaches to produce advanced biofuels and prospects for reducing their costs.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

206,07 € per year

only 17,17 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

WLTC and real-driving emissions for an autochthonous biofuel from wine-industry waste

Article Open access 06 April 2021

Physiological limitations and opportunities in microbial metabolic engineering

Article 02 August 2021

Towards carbon-neutral and clean propulsion in heavy-duty transportation with hydroformylated Fischer–Tropsch fuels

Article Open access 08 July 2024

References

  1. US Energy Information Administration. International energy outlook 2019: with projections to 2050 (EIA, 2019).
  2. US Environmental Protection Agency. Sources of greenhouse gas emissions. EPAhttps://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions (2020).
  3. Kircher, M. Sustainability of biofuels and renewable chemicals production from biomass. Curr. Opin. Chem. Biol.29, 26–31 (2015). ArticleCASPubMedGoogle Scholar
  4. Hughes, S. R. & Jones, M. A. in Green Energy to Sustainability: Strategies for Global Industries (eds Vertès, A. A., Qureshi, N., Blaschek, H. P. & Yukawa, H.) 137–156 (Wiley, 2020).
  5. Liu, Y. et al. Biofuels for a sustainable future. Cell184, 1636–1647 (2021). ArticleCASPubMedGoogle Scholar
  6. Field, J. L. et al. Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. Proc. Natl Acad. Sci. USA117, 21968–21977 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  7. Baral, N. et al. Techno-economic analysis and life-cycle greenhouse gas mitigation cost of five routes to bio-jet fuel blendstocks. Energy Environ. Sci.12, 807–824 (2018). ArticleGoogle Scholar
  8. Hannon, J. R. et al. Technoeconomic and life-cycle analysis of single-step catalytic conversion of wet ethanol into fungible fuel blendstocks. Proc. Natl Acad. Sci. USA117, 12576–12583 (2020). ArticleCASPubMedGoogle Scholar
  9. Baral, N. R. et al. Approaches for more efficient biological conversion of lignocellulosic feedstocks to biofuels and bioproducts. ACS Sustain. Chem. Eng.7, 9062–9079 (2019). ArticleCASGoogle Scholar
  10. Yang, M., Baral, N. R., Anastasopoulou, A., Breunig, H. M. & Scown, C. D. Cost and life-cycle greenhouse gas implications of integrating biogas upgrading and carbon capture technologies in cellulosic biorefineries. Environ. Sci. Technol.54, 12810–12819 (2020). ArticleCASPubMedGoogle Scholar
  11. Langholtz, M. H., Stokes, B. J. & Eaton, L. M. Billion-ton report: advancing domestic resources for a thriving bioeconomy, volume 1: economic availability of feedstocks (Oak Ridge National Laboratory, 2016).
  12. Global Bioenergy Association. Global Bioenergy Statistics 2019. http://www.worldbioenergy.org/uploads/191129%20WBA%20GBS%202019_HQ.pdf (Global Bioenergy Association, 2019).
  13. Pattrick, C. A. et al. Proteomic profiling, transcription factor modeling, and genomics of evolved tolerant strains elucidate mechanisms of vanillin toxicity in Escherichia coli. mSystems4, e00163-19 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  14. Carroll, A. & Somerville, C. Cellulosic biofuels. Annu. Rev. Plant Biol.60, 165–182 (2009). ArticleCASPubMedGoogle Scholar
  15. Blanch, H. W., Simmons, B. A. & Klein-Marcuschamer, D. Biomass deconstruction to sugars. Biotechnol. J.6, 1086–1102 (2011). ArticleCASPubMedGoogle Scholar
  16. Dale, B. E. & Ong, R. G. Energy, wealth, and human development: why and how biomass pretreatment research must improve. Biotechnol. Prog.28, 893–898 (2012). ArticleCASPubMedGoogle Scholar
  17. Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B. A. & Blanch, H. W. The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol. Bioeng.109, 1083–1087 (2012). ArticleCASPubMedGoogle Scholar
  18. Lee, S. Y., Kim, H. M. & Cheon, S. Metabolic engineering for the production of hydrocarbon fuels. Curr. Opin. Biotechnol.33, 15–22 (2015). A comprehensive review of metabolic engineering for biofuel production. ArticleCASPubMedGoogle Scholar
  19. Adom, F., Dunn, J. B., Han, J. & Sather, N. Life-cycle fossil energy consumption and greenhouse gas emissions of bioderived chemicals and their conventional counterparts. Environ. Sci. Technol.48, 14624–14631 (2014). ArticleCASPubMedGoogle Scholar
  20. Biddy, M. J. et al. The techno-economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass. ACS Sustain. Chem. Eng.4, 3196–3211 (2016). ArticleCASGoogle Scholar
  21. Brooks, K. P. et al. in Biofuels for Aviation: Feedstocks, Technology and Implementation (ed. Chuck, C.) 109–150 (Academic, 2016).
  22. George, K. W., Alonso-Gutierrez, J., Keasling, J. D. & Lee, T. S. Isoprenoid drugs, biofuels, and chemicals-artemisinin, farnesene, and beyond. Adv. Biochem. Eng. Biotechnol.148, 355–389 (2015). CASPubMedGoogle Scholar
  23. Li, M. et al. Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories. Nat. Prod. Rep.37, 80–99 (2020). ArticleCASPubMedGoogle Scholar
  24. Rodríguez-Concepción, M. Plant isoprenoids: a general overview. Methods Mol. Biol.1153, 1–5 (2014). ArticlePubMedCASGoogle Scholar
  25. Gao, Y., Honzatko, R. B. & Peters, R. J. Terpenoid synthase structures: a so far incomplete view of complex catalysis. Nat. Prod. Rep.29, 1153–1175 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  26. Peralta-Yahya, P. P. et al. Identification and microbial production of a terpene-based advanced biofuel. Nat. Commun.2, 483 (2011). ArticlePubMedCASGoogle Scholar
  27. Harrison, K. W. & Harvey, B. G. Renewable high density fuels containing tricyclic sesquiterpanes and alkyl diamondoids. Sustain. Energy Fuels1, 467–473 (2017). ArticleCASGoogle Scholar
  28. Zebec, Z. et al. Towards synthesis of monoterpenes and derivatives using synthetic biology. Curr. Opin. Chem. Biol.34, 37–43 (2016). ArticleCASPubMedGoogle Scholar
  29. George, K. W. et al. Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production. Biotechnol. Bioeng.111, 1648–1658 (2014). ArticleCASPubMedGoogle Scholar
  30. Meadows, A. L. et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature537, 694–697 (2016). A good demonstration of microbial engineering for biofuel-producing yeast, especially at industrial scale. ArticleCASPubMedGoogle Scholar
  31. Kang, A. et al. Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production. Metab. Eng.34, 25–35 (2016). ArticleCASPubMedGoogle Scholar
  32. Kang, A. et al. Optimization of the IPP-bypass mevalonate pathway and fed-batch fermentation for the production of isoprenol in Escherichia coli. Metab. Eng.56, 85–96 (2019). ArticleCASPubMedGoogle Scholar
  33. Lennen, R. M. & Pfleger, B. F. Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol.30, 659–667 (2012). ArticleCASPubMedGoogle Scholar
  34. Budin, I. et al. Viscous control of cellular respiration by membrane lipid composition. Science362, 1186–1189 (2018). ArticleCASPubMedGoogle Scholar
  35. Marella, E. R., Holkenbrink, C., Siewers, V. & Borodina, I. Engineering microbial fatty acid metabolism for biofuels and biochemicals. Curr. Opin. Biotechnol.50, 39–46 (2018). ArticleCASPubMedGoogle Scholar
  36. Qiao, K. et al. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab. Eng.29, 56–65 (2015). ArticleCASPubMedGoogle Scholar
  37. Steen, E. J. et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature463, 559–562 (2010). ArticleCASPubMedGoogle Scholar
  38. Zhou, Y. J. et al. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat. Commun.7, 11709 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  39. Krivoruchko, A., Zhang, Y., Siewers, V., Chen, Y. & Nielsen, J. Microbial acetyl-CoA metabolism and metabolic engineering. Metab. Eng.28, 28–42 (2015). ArticleCASPubMedGoogle Scholar
  40. Qiao, K., Wasylenko, T. M., Zhou, K., Xu, P. & Stephanopoulos, G. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat. Biotechnol.35, 173–177 (2017). ArticleCASPubMedGoogle Scholar
  41. Zhu, Z. et al. Expanding the product portfolio of fungal type I fatty acid synthases. Nat. Chem. Biol.13, 360–362 (2017). ArticleCASPubMedGoogle Scholar
  42. Schirmer, A., Rude, M. A., Li, X., Popova, E. & del Cardayre, S. B. Microbial biosynthesis of alkanes. Science329, 559–562 (2010). ArticleCASPubMedGoogle Scholar
  43. Rude, M. A. et al. Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species. Appl. Environ. Microbiol.77, 1718–1727 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  44. Youngquist, J. T. et al. Production of medium chain length fatty alcohols from glucose in Escherichia coli. Metab. Eng.20, 177–186 (2013). ArticleCASPubMedGoogle Scholar
  45. Goh, E.-B., Baidoo, E. E. K., Keasling, J. D. & Beller, H. R. Engineering of bacterial methyl ketone synthesis for biofuels. Appl. Environ. Microbiol.78, 70–80 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  46. Javidpour, P. et al. Investigation of proposed ladderane biosynthetic genes from anammox bacteria by heterologous expression in E. coli. PLoS ONE11, e0151087 (2016). ArticlePubMedPubMed CentralCASGoogle Scholar
  47. Czerwiec, Q. et al. Optimization of cyclopropane fatty acids production in Yarrowia lipolytica. Yeast36, 143–151 (2019). CASPubMedGoogle Scholar
  48. Rabinovitch-Deere, C. A., Oliver, J. W. K., Rodriguez, G. M. & Atsumi, S. Synthetic biology and metabolic engineering approaches to produce biofuels. Chem. Rev.113, 4611–4632 (2013). ArticleCASPubMedGoogle Scholar
  49. Bond-Watts, B. B., Bellerose, R. J. & Chang, M. C. Y. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat. Chem. Biol.7, 222–227 (2011). ArticleCASPubMedGoogle Scholar
  50. Atsumi, S., Hanai, T. & Liao, J. C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature451, 86–89 (2008). ArticleCASPubMedGoogle Scholar
  51. Sherkhanov, S. et al. Isobutanol production freed from biological limits using synthetic biochemistry. Nat. Commun.11, 4292 (2020). A good demonstration of the cell-free system for biofuel (isobutanol) production with high TRY. ArticleCASPubMedPubMed CentralGoogle Scholar
  52. Rodriguez, G. M., Tashiro, Y. & Atsumi, S. Expanding ester biosynthesis in Escherichia coli. Nat. Chem. Biol.10, 259–265 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  53. Lee, J.-W. & Trinh, C. T. Microbial biosynthesis of lactate esters. Biotechnol. Biofuels12, 226 (2019). ArticlePubMedPubMed CentralCASGoogle Scholar
  54. Yuzawa, S., Keasling, J. D. & Katz, L. Insights into polyketide biosynthesis gained from repurposing antibiotic-producing polyketide synthases to produce fuels and chemicals. J. Antibiot.69, 494–499 (2016). ArticleCASGoogle Scholar
  55. Cai, W. & Zhang, W. Engineering modular polyketide synthases for production of biofuels and industrial chemicals. Curr. Opin. Biotechnol.50, 32–38 (2018). ArticleCASPubMedGoogle Scholar
  56. Liu, Q. et al. Engineering an iterative polyketide pathway in Escherichia coli results in single-form alkene and alkane overproduction. Metab. Eng.28, 82–90 (2015). ArticleCASPubMedGoogle Scholar
  57. Poust, S. et al. Divergent mechanistic routes for the formation of gem-dimethyl groups in the biosynthesis of complex polyketides. Angew. Chem. Int. Ed.54, 2370–2373 (2015). ArticleCASGoogle Scholar
  58. Srirangan, K. et al. Engineering Escherichia coli for Microbial Production of Butanone. Appl. Environ. Microbiol.82, 2574–2584 (2016). ArticlePubMedPubMed CentralGoogle Scholar
  59. Yuzawa, S. et al. Short-chain ketone production by engineered polyketide synthases in Streptomyces albus. Nat. Commun.9, 4569 (2018). ArticlePubMedPubMed CentralCASGoogle Scholar
  60. Zargar, A. et al. Leveraging microbial biosynthetic pathways for the generation of “drop-in” biofuels. Curr. Opin. Biotechnol.45, 156–163 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  61. Smith, K. M., Cho, K.-M. & Liao, J. C. Engineering Corynebacterium glutamicum for isobutanol production. Appl. Microbiol. Biotechnol.87, 1045–1055 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  62. Lin, P. P. et al. Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum. Metab. Eng.31, 44–52 (2015). ArticleCASPubMedGoogle Scholar
  63. Yan, Q. & Pfleger, B. F. Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals. Metab. Eng.58, 35–46 (2020). ArticleCASPubMedGoogle Scholar
  64. Hanko, E. K. R. et al. Engineering β-oxidation in Yarrowia lipolytica for methyl ketone production. Metab. Eng.48, 52–62 (2018). ArticleCASPubMedGoogle Scholar
  65. Kim, H. M., Chae, T. U., Choi, S. Y., Kim, W. J. & Lee, S. Y. Engineering of an oleaginous bacterium for the production of fatty acids and fuels. Nat. Chem. Biol.15, 721–729 (2019). ArticleCASPubMedGoogle Scholar
  66. Sasaki, Y. et al. Engineering Corynebacterium glutamicum to produce the biogasoline isopentenol from plant biomass hydrolysates. Biotechnol. Biofuels12, 41 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  67. Yaegashi, J. et al. Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts. Biotechnol. Biofuels10, 241 (2017). ArticlePubMedPubMed CentralCASGoogle Scholar
  68. Sundstrom, E. et al. Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with Rhodosporidium toruloides to produce advanced biofuels. Green Chem.20, 2870–2879 (2018). ArticleCASGoogle Scholar
  69. Zhuang, X. et al. Monoterpene production by the carotenogenic yeast Rhodosporidium toruloides. Microb. Cell Fact.18, 54 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  70. Miao, R., Xie, H. & Lindblad, P. Enhancement of photosynthetic isobutanol production in engineered cells of Synechocystis PCC 6803. Biotechnol. Biofuels11, 267 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  71. Nguyen, A. D., Kim, D. & Lee, E. Y. Unlocking the biosynthesis of sesquiterpenoids from methane via the methylerythritol phosphate pathway in methanotrophic bacteria, using α-humulene as a model compound. Metab. Eng.61, 69–78 (2020). ArticleCASPubMedGoogle Scholar
  72. Krieg, T., Sydow, A., Faust, S., Huth, I. & Holtmann, D. CO2 to terpenes: autotrophic and electroautotrophic α-humulene production with Cupriavidus necator. Angew. Chem. Int. Ed.57, 1879–1882 (2018). ArticleCASGoogle Scholar
  73. Grenz, S. et al. Exploiting Hydrogenophaga pseudoflava for aerobic syngas-based production of chemicals. Metab. Eng.55, 220–230 (2019). ArticleCASPubMedGoogle Scholar
  74. Mukhopadhyay, A. Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol.23, 498–508 (2015). ArticleCASPubMedGoogle Scholar
  75. Niu, F.-X., He, X., Wu, Y.-Q. & Liu, J.-Z. Enhancing production of pinene in Escherichia coli by using a combination of tolerance, evolution, and modular co-culture engineering. Front. Microbiol.9, 1623 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  76. Mendez-Perez, D. et al. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli. Biotechnol. Bioeng.114, 1703–1712 (2017). ArticleCASPubMedGoogle Scholar
  77. Chong, H. et al. Enhancing E. coli isobutanol tolerance through engineering its global transcription factor cAMP receptor protein (CRP). Biotechnol. Bioeng.111, 700–708 (2014). ArticleCASPubMedGoogle Scholar
  78. Mukhopadhyay, A., Hillson, N. J. & Keasling, J. D. in Microbial Stress Tolerance for Biofuels (ed. Liu, Z. L.) 209–238 (Springer, 2012).
  79. Park, J. I. et al. A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels. PLoS ONE7, e37010 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  80. Yu, C., Simmons, B. A., Singer, S. W., Thelen, M. P. & VanderGheynst, J. S. Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts. Appl. Microbiol. Biotechnol.100, 10237–10249 (2016). ArticleCASPubMedGoogle Scholar
  81. Thorwall, S., Schwartz, C., Chartron, J. W. & Wheeldon, I. Stress-tolerant non-conventional microbes enable next-generation chemical biosynthesis. Nat. Chem. Biol.16, 113–121 (2020). ArticleCASPubMedGoogle Scholar
  82. Sandoval, N. R. & Papoutsakis, E. T. Engineering membrane and cell-wall programs for tolerance to toxic chemicals: beyond solo genes. Curr. Opin. Microbiol.33, 56–66 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  83. Basler, G., Thompson, M., Tullman-Ercek, D. & Keasling, J. A Pseudomonas putida efflux pump acts on short-chain alcohols. Biotechnol. Biofuels11, 136 (2018). ArticlePubMedPubMed CentralCASGoogle Scholar
  84. Chen, B., Ling, H. & Chang, M. W. Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae. Biotechnol. Biofuels6, 21 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  85. Chen, Y. et al. Reverse engineering of fatty acid-tolerant Escherichia coli identifies design strategies for robust microbial cell factories. Metab. Eng.61, 120–130 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  86. Otoupal, P. B. & Chatterjee, A. CRISPR gene perturbations provide insights for improving bacterial biofuel tolerance. Front. Bioeng. Biotechnol.6, 122 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  87. Kurgan, G. et al. Bioprospecting of native efflux pumps to enhance furfural tolerance in ethanologenic Escherichia coli. Appl. Environ. Microbiol.85, e02985-18 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  88. Song, H.-S. et al. Increase in furfural tolerance by combinatorial overexpression of NAD salvage pathway enzymes in engineered isobutanol-producing E. coli. Bioresour. Technol.245, 1430–1435 (2017). ArticleCASPubMedGoogle Scholar
  89. Frederix, M. et al. Development of an E. coli strain for one-pot biofuel production from ionic liquid pretreated cellulose and switchgrass. Green Chem.18, 4189–4197 (2016). ArticleCASGoogle Scholar
  90. Eng, T. et al. Restoration of biofuel production levels and increased tolerance under ionic liquid stress is enabled by a mutation in the essential Escherichia coli gene cydC. Microb. Cell Fact.17, 159 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  91. Ruegg, T. L. et al. Jungle Express is a versatile repressor system for tight transcriptional control. Nat. Commun.9, 3617 (2018). ArticlePubMedPubMed CentralCASGoogle Scholar
  92. Wang, S. et al. NaCl enhances Escherichia coli growth and isoprenol production in the presence of imidazolium-based ionic liquids. Bioresour. Technol. Rep.6, 1–5 (2019). ArticleGoogle Scholar
  93. Nikel, P. I. & de Lorenzo, V. Pseudomonas putida as a functional chassis for industrial biocatalysis: from native biochemistry to trans-metabolism. Metab. Eng.50, 142–155 (2018). ArticleCASPubMedGoogle Scholar
  94. Yang, S. et al. Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb. Biotechnol.9, 699–717 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  95. Stella, R. G., Wiechert, J., Noack, S. & Frunzke, J. Evolutionary engineering of Corynebacterium glutamicum. Biotechnol. J.14, e1800444 (2019). ArticlePubMedCASGoogle Scholar
  96. Castro, A. R., Rocha, I., Alves, M. M. & Pereira, M. A. Rhodococcus opacus B4: a promising bacterium for production of biofuels and biobased chemicals. AMB. Express6, 35 (2016). ArticlePubMedPubMed CentralCASGoogle Scholar
  97. Thompson, M. G. et al. Fatty acid and alcohol metabolism in Pseudomonas putida: functional analysis using random barcode transposon sequencing. Appl. Environ. Microbiol.86, e01665-20 (2020). ArticlePubMedPubMed CentralGoogle Scholar
  98. Sandberg, T. E., Salazar, M. J., Weng, L. L., Palsson B. O. & Feist, A. M. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab. Eng.56, 1–16 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  99. Lim, H. G. et al. Generation of ionic liquid tolerant Pseudomonas putida KT2440 strains via adaptive laboratory evolution. Green Chem.22, 5677–5690 (2020). ArticleCASGoogle Scholar
  100. Price, M. N. et al. Mutant phenotypes for thousands of bacterial genes of unknown function. Nature557, 503–509 (2018). A study showing the power of the RB-TnSeq approach in elucidating gene function in a vast number of microorganisms, which is not only valuable for identifying gene targets for strain engineering but is also broadly useful for improving GSMMs. ArticleCASPubMedGoogle Scholar
  101. Li, W.-J. et al. Unraveling 1,4-butanediol metabolism in Pseudomonas putida KT2440. Front. Microbiol.11, 382 (2020). ArticlePubMedPubMed CentralGoogle Scholar
  102. Phaneuf, P. V., Gosting, D., Palsson, B. O. & Feist, A. M. ALEdb 1.0: a database of mutations from adaptive laboratory evolution experimentation. Nucleic Acids Res.47, D1164–D1171 (2019). ArticlePubMedGoogle Scholar
  103. Zhang, F., Carothers, J. M. & Keasling, J. D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol.30, 354–359 (2012). ArticleCASPubMedGoogle Scholar
  104. DeLoache, W. C., Russ, Z. N. & Dueber, J. E. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways. Nat. Commun.7, 11152 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  105. Hu, T. et al. Engineering chimeric diterpene synthases and isoprenoid biosynthetic pathways enables high-level production of miltiradiene in yeast. Metab. Eng.60, 87–96 (2020). ArticleCASPubMedGoogle Scholar
  106. McCloskey, D. et al. Adaptation to the coupling of glycolysis to toxic methylglyoxal production in tpiA deletion strains of Escherichia coli requires synchronized and counterintuitive genetic changes. Metab. Eng.48, 82–93 (2018). ArticleCASPubMedGoogle Scholar
  107. Gubellini, F. et al. Physiological response to membrane protein overexpression in E. coli. Mol. Cell. Proteom.10, M111.007930 (2011). ArticleCASGoogle Scholar
  108. Baumgarten, T., Ytterberg, A. J., Zubarev, R. A. & de Gier, J.-W. Optimizing recombinant protein production in the Escherichia coli periplasm alleviates stress. Appl. Environ. Microbiol.84, e00270-18 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  109. Boyarskiy, S., Davis López, S., Kong, N. & Tullman-Ercek, D. Transcriptional feedback regulation of efflux protein expression for increased tolerance to and production of n-butanol. Metab. Eng.33, 130–137 (2016). ArticleCASPubMedGoogle Scholar
  110. Henard, C. A., Freed, E. F. & Guarnieri, M. T. Phosphoketolase pathway engineering for carbon-efficient biocatalysis. Curr. Opin. Biotechnol.36, 183–188 (2015). ArticleCASPubMedGoogle Scholar
  111. Lin, P. P. et al. Construction and evolution of an Escherichia coli strain relying on nonoxidative glycolysis for sugar catabolism. Proc. Natl Acad. Sci. USA115, 3538–3546 (2018). A very detailed and extensive demonstration of engineering non-oxidative glycolysis. ArticleCASPubMedPubMed CentralGoogle Scholar
  112. Bogorad, I. W., Lin, T.-S. & Liao, J. C. Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature502, 693–697 (2013). ArticleCASPubMedGoogle Scholar
  113. Fleige, C., Kroll, J. & Steinbüchel, A. Establishment of an alternative phosphoketolase-dependent pathway for fructose catabolism in Ralstonia eutropha H16. Appl. Microbiol. Biotechnol.91, 769–776 (2011). ArticleCASPubMedGoogle Scholar
  114. Chubukov, V., Mukhopadhyay, A., Petzold, C. J., Keasling, J. D. & Martín, H. G. Synthetic and systems biology for microbial production of commodity chemicals. NPJ Syst. Biol. Appl.2, 16009 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  115. Tian, T., Kang, J. W., Kang, A. & Lee, T. S. Redirecting metabolic flux via combinatorial multiplex CRISPRi-mediated repression for isopentenol production in Escherichia coli. ACS Synth. Biol.8, 391–402 (2019). ArticleCASPubMedGoogle Scholar
  116. George, K. W. et al. Metabolic engineering for the high-yield production of isoprenoid-based C5 alcohols in E. coli. Sci. Rep.5, 11128 (2015). ArticlePubMedPubMed CentralGoogle Scholar
  117. Strucko, T. et al. Laboratory evolution reveals regulatory and metabolic trade-offs of glycerol utilization in Saccharomyces cerevisiae. Metab. Eng.47, 73–82 (2018). ArticleCASPubMedGoogle Scholar
  118. Caspeta, L. et al. Biofuels. Altered sterol composition renders yeast thermotolerant. Science346, 75–78 (2014). ArticleCASPubMedGoogle Scholar
  119. Mohamed, E. T. et al. Generation of a platform strain for ionic liquid tolerance using adaptive laboratory evolution. Microb. Cell Fact.16, 204 (2017). ArticlePubMedPubMed CentralCASGoogle Scholar
  120. Lennen, R. M. et al. Adaptive laboratory evolution reveals general and specific chemical tolerance mechanisms and enhances biochemical production. Preprint at bioRxivhttps://doi.org/10.1101/634105 (2019). ArticleGoogle Scholar
  121. Shepelin, D., Hansen, A. S. L., Lennen, R., Luo, H. & Herrgård, M. J. Selecting the best: evolutionary engineering of chemical production in microbes. Genes9, 249 (2018). An excellent review on growth coupling. ArticlePubMed CentralCASGoogle Scholar
  122. Fong, S. S. et al. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol. Bioeng.91, 643–648 (2005). ArticleCASPubMedGoogle Scholar
  123. Zhang, X., Jantama, K., Moore, J. C., Shanmugam, K. T. & Ingram, L. O. Production of L-alanine by metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol.77, 355–366 (2007). ArticleCASPubMedGoogle Scholar
  124. Shen, C. R. et al. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl. Environ. Microbiol.77, 2905–2915 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  125. Machado, H. B., Dekishima, Y., Luo, H., Lan, E. I. & Liao, J. C. A selection platform for carbon chain elongation using the CoA-dependent pathway to produce linear higher alcohols. Metab. Eng.14, 504–511 (2012). ArticleCASPubMedGoogle Scholar
  126. Reyes, L. H., Gomez, J. M. & Kao, K. C. Improving carotenoids production in yeast via adaptive laboratory evolution. Metab. Eng.21, 26–33 (2014). ArticleCASPubMedGoogle Scholar
  127. Tai, Y.-S. et al. Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nat. Chem. Biol.12, 247–253 (2016). ArticleCASPubMedGoogle Scholar
  128. Hädicke, O. & Klamt, S. Computing complex metabolic intervention strategies using constrained minimal cut sets. Metab. Eng.13, 204–213 (2011). ArticlePubMedCASGoogle Scholar
  129. Harder, B.-J., Bettenbrock, K. & Klamt, S. Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli. Metab. Eng.38, 29–37 (2016). ArticleCASPubMedGoogle Scholar
  130. von Kamp, A. & Klamt, S. Growth-coupled overproduction is feasible for almost all metabolites in five major production organisms. Nat. Commun.8, 15956 (2017). ArticleCASGoogle Scholar
  131. Banerjee, D. et al. Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale. Nat. Commun.11, 5385 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  132. King, Z. A. et al. BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res.44, D515–D522 (2016). ArticleCASPubMedGoogle Scholar
  133. Landon, S., Rees-Garbutt, J., Marucci, L. & Grierson, C. Genome-driven cell engineering review: in vivo and in silico metabolic and genome engineering. Essays Biochem.63, 267–284 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  134. Yim, H. et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol.7, 445–452 (2011). ArticleCASPubMedGoogle Scholar
  135. Ng, C. Y., Jung, M.-Y., Lee, J. & Oh, M.-K. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb. Cell Fact.11, 68 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  136. Izallalen, M. et al. Geobacter sulfurreducens strain engineered for increased rates of respiration. Metab. Eng.10, 267–275 (2008). ArticleCASPubMedGoogle Scholar
  137. Fowler, Z. L., Gikandi, W. W. & Koffas, M. A. G. Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl. Environ. Microbiol.75, 5831–5839 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  138. Chemler, J. A., Fowler, Z. L., McHugh, K. P. & Koffas, M. A. G. Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab. Eng.12, 96–104 (2010). ArticleCASPubMedGoogle Scholar
  139. Asadollahi, M. A. et al. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab. Eng.11, 328–334 (2009). ArticleCASPubMedGoogle Scholar
  140. Brochado, A. R. et al. Improved vanillin production in baker’s yeast through in silico design. Microb. Cell Fact.9, 84 (2010). ArticlePubMedPubMed CentralCASGoogle Scholar
  141. Choi, H. S., Lee, S. Y., Kim, T. Y. & Woo, H. M. In silico identification of gene amplification targets for improvement of lycopene production. Appl. Environ. Microbiol.76, 3097–3105 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  142. Becker, J., Zelder, O., Häfner, S., Schröder, H. & Wittmann, C. From zero to hero–design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng.13, 159–168 (2011). ArticleCASPubMedGoogle Scholar
  143. Li, S., Huang, D., Li, Y., Wen, J. & Jia, X. Rational improvement of the engineered isobutanol-producing Bacillus subtilis by elementary mode analysis. Microb. Cell Fact.11, 101 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  144. Xu, P., Ranganathan, S., Fowler, Z. L., Maranas, C. D. & Koffas, M. A. G. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab. Eng.13, 578–587 (2011). ArticleCASPubMedGoogle Scholar
  145. Ranganathan, S. et al. An integrated computational and experimental study for overproducing fatty acids in Escherichia coli. Metab. Eng.14, 687–704 (2012). An illustrative example of using GSMMs to guide bioengineering. ArticleCASPubMedGoogle Scholar
  146. Otero, J. M. et al. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLoS ONE8, e54144 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  147. Ghosh, A. et al. 13 C metabolic flux analysis for systematic metabolic engineering of S. cerevisiae for overproduction of fatty acids. Front. Bioeng. Biotechnol.4, 76 (2016). ArticlePubMedPubMed CentralGoogle Scholar
  148. d’Espaux, L. et al. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks. Metab. Eng.42, 115–125 (2017). ArticlePubMedCASGoogle Scholar
  149. Lawson, C. E. et al. Machine learning for metabolic engineering: a review. Metab. Eng. 63, 34–60. A good introduction to machine learning for the metabolic engineer.
  150. Alonso-Gutierrez, J. et al. Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering. Metab. Eng.28, 123–133 (2015). ArticleCASPubMedGoogle Scholar
  151. Ohtake, T. et al. Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli. Metab. Eng.41, 135–143 (2017). ArticleCASPubMedGoogle Scholar
  152. Xu, P., Rizzoni, E. A., Sul, S.-Y. & Stephanopoulos, G. Improving metabolic pathway efficiency by statistical model-based multivariate regulatory metabolic engineering. ACS Synth. Biol.6, 148–158 (2017). ArticleCASPubMedGoogle Scholar
  153. Zhou, Y. et al. MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae. Metab. Eng.47, 294–302 (2018). ArticleCASPubMedGoogle Scholar
  154. Costello, Z. & Martin, H. G. A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data. NPJ Syst. Biol. Appl.4, 19 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  155. Opgenorth, P. et al. Lessons from two design-build-test-learn cycles of dodecanol production in Escherichia coli aided by machine learning. ACS Synth. Biol.8, 1337–1351 (2019). ArticleCASPubMedGoogle Scholar
  156. Jervis, A. J. et al. Machine learning of designed translational control allows predictive pathway optimization in Escherichia coli. ACS Synth. Biol.8, 127–136 (2019). An excellent application of machine learning to transcriptional control. ArticleCASPubMedGoogle Scholar
  157. HamediRad, M. et al. Towards a fully automated algorithm driven platform for biosystems design. Nat. Commun.10, 5150 (2019). A fantastic example of the promise of combining machine learning, synthetic biology and automation. ArticlePubMedPubMed CentralCASGoogle Scholar
  158. Zhang, J. et al. Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism. Nat. Commun.11, 880 (2020). CASGoogle Scholar
  159. Radivojević, T., Costello, Z., Workman, K. & Garcia Martin, H. A machine learning automated recommendation tool for synthetic biology. Nat. Commun.11, 4879 (2020). ArticlePubMedPubMed CentralCASGoogle Scholar
  160. Yadav, V. G., De Mey, M., Lim, C. G., Ajikumar, P. K. & Stephanopoulos, G. The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab. Eng.14, 233–241 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  161. Carbonell, P., Radivojevic, T. & García Martín, H. Opportunities at the intersection of synthetic biology, machine learning, and automation. ACS Synth. Biol.8, 1474–1477 (2019). ArticleCASPubMedGoogle Scholar
  162. Dietrich, J. A., McKee, A. E. & Keasling, J. D. High-throughput metabolic engineering: advances in small-molecule screening and selection. Annu. Rev. Biochem.79, 563–590 (2010). ArticleCASPubMedGoogle Scholar
  163. Crater, J. S. & Lievense, J. C. Scale-up of industrial microbial processes. FEMS Microbiol. Lett.365, fny138 (2018). ArticleCASPubMed CentralGoogle Scholar
  164. Davis, R. et al. Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: dilute-acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons (National Renewable Energy Laboratory, 2013).
  165. Cruz Bournazou, M. N. et al. Online optimal experimental re-design in robotic parallel fed-batch cultivation facilities. Biotechnol. Bioeng.114, 610–619 (2017). ArticleCASPubMedGoogle Scholar
  166. Tai, M., Ly, A., Leung, I. & Nayar, G. Efficient high-throughput biological process characterization: definitive screening design with the Ambr250 bioreactor system. Biotechnol. Prog.31, 1388–1395 (2015). ArticleCASPubMedGoogle Scholar
  167. Wong, B. G., Mancuso, C. P., Kiriakov, S., Bashor, C. J. & Khalil, A. S. Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER. Nat. Biotechnol.36, 614–623 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  168. Haringa, C. et al. Computational fluid dynamics simulation of an industrial P. chrysogenum fermentation with a coupled 9-pool metabolic model: towards rational scale-down and design optimization. Chem. Eng. Sci.175, 12–24 (2017). ArticleCASGoogle Scholar
  169. Rugbjerg, P. & Sommer, M. O. A. Overcoming genetic heterogeneity in industrial fermentations. Nat. Biotechnol.37, 869–876 (2019). ArticleCASPubMedGoogle Scholar
  170. Wehrs, M. et al. Investigation of Bar-seq as a method to study population dynamics of Saccharomyces cerevisiae deletion library during bioreactor cultivation. Microb. Cell Fact.19, 167 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  171. Wang, O. & Coates, J. D. Biotechnological applications of microbial (per)chlorate reduction. Microorganisms5, 76 (2017). ArticleCASPubMed CentralGoogle Scholar
  172. Shaw, A. J. et al. Metabolic engineering of microbial competitive advantage for industrial fermentation processes. Science353, 583–586 (2016). ArticleCASPubMedGoogle Scholar
  173. Dahl, R. H. et al. Engineering dynamic pathway regulation using stress-response promoters. Nat. Biotechnol.31, 1039–1046 (2013). ArticleCASPubMedGoogle Scholar
  174. Dafoe, J. T. & Daugulis, A. J. In situ product removal in fermentation systems: improved process performance and rational extractant selection. Biotechnol. Lett.36, 443–460 (2014). ArticleCASPubMedGoogle Scholar
  175. Xue, C. et al. Integrated butanol recovery for an advanced biofuel: current state and prospects. Appl. Microbiol. Biotechnol.98, 3463–3474 (2014). ArticleCASPubMedGoogle Scholar
  176. Gaspar, D. Top ten blendstocks for turbocharged gasoline engines: bioblendstocks with potential to deliver the for highest engine efficiency (Pacific Northwest National Laboratory, 2019). A systematic analysis and down-election of petrol bioblendstock candidates based on fuel properties and engine performance.
  177. Monroe, E. et al. Discovery of novel octane hyperboosting phenomenon in prenol biofuel/gasoline blends. Fuel239, 1143–1148 (2019). ArticleCASGoogle Scholar
  178. Ignea, C. et al. Synthesis of 11-carbon terpenoids in yeast using protein and metabolic engineering. Nat. Chem. Biol.14, 1090–1098 (2018). ArticleCASPubMedGoogle Scholar
  179. Huccetogullari, D., Luo, Z. W. & Lee, S. Y. Metabolic engineering of microorganisms for production of aromatic compounds. Microb. Cell Fact.18, 41 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  180. Das, D. D., St. John, P. C., McEnally, C. S., Kim, S. & Pfefferle, L. D. Measuring and predicting sooting tendencies of oxygenates, alkanes, alkenes, cycloalkanes, and aromatics on a unified scale. Combust. Flame190, 349–364 (2018). ArticleCASGoogle Scholar
  181. Huo, X. et al. Tailoring diesel bioblendstock from integrated catalytic upgrading of carboxylic acids: a “fuel property first” approach. Green Chem.21, 5813–5827 (2019). ArticleCASGoogle Scholar
  182. Yang, M. et al. Accumulation of high-value bioproducts in planta can improve the economics of advanced biofuels. Proc. Natl Acad. Sci. USA117, 8639–8648 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  183. Lin, C.-Y. & Eudes, A. Strategies for the production of biochemicals in bioenergy crops. Biotechnol. Biofuels13, 71 (2020). ArticlePubMedPubMed CentralGoogle Scholar
  184. Blombach, B. et al. Corynebacterium glutamicum tailored for efficient isobutanol production. Appl. Environ. Microbiol.77, 3300–3310 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  185. Higashide, W., Li, Y., Yang, Y. & Liao, J. C. Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl. Environ. Microbiol.77, 2727–2733 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  186. Sawyer, R. F. Trends in auto emissions and gasoline composition. Environ. Health Perspect.101 (Suppl. 6), 5–12 (1993). ArticleCASPubMedPubMed CentralGoogle Scholar
  187. Ghosh, P., Hickey, K. J. & Jaffe, S. B. Development of a detailed gasoline composition-based octane model. Ind. Eng. Chem. Res.45, 337–345 (2006). ArticleCASGoogle Scholar
  188. Ghosh, P. & Jaffe, S. B. Detailed composition-based model for predicting the cetane number of diesel fuels. Ind. Eng. Chem. Res.45, 346–351 (2006). ArticleCASGoogle Scholar
  189. ASTM International. ASTM D1655 — 20e1: standard specification for aviation turbine fuels (ASTM, 2020).

Acknowledgements

The authors thank C. Scown (Lawrence Berkeley National Laboratory) for helpful discussions on life cycle and technoeconomic analyses of biofuel production. This work was performed as part of the US Department of Energy (DOE) Joint BioEnergy Institute (https://www.jbei.org) supported by the DOE, Office of Science, Office of Biological and Environmental Research, and by the DOE, Energy Efficiency and Renewable Energy, Bioenergy Technologies Office, and as part of the Co-Optimization of Fuels & Engines project sponsored by the DOE, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office and Vehicle Technologies Office, under contract DEAC02-05CH11231 between the DOE and Lawrence Berkeley National Laboratory. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the US Government or any agency thereof. Neither the US Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of the manuscript, or allow others to do so, for US Government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Author information

Authors and Affiliations

  1. Joint BioEnergy Institute, Emeryville, CA, USA Jay Keasling, Hector Garcia Martin, Taek Soon Lee, Aindrila Mukhopadhyay & Steven W. Singer
  2. Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA Jay Keasling
  3. Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA Jay Keasling
  4. Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA Jay Keasling, Hector Garcia Martin, Taek Soon Lee, Aindrila Mukhopadhyay, Steven W. Singer & Eric Sundstrom
  5. Center for Biosustainability, Danish Technical University, Lyngby, Denmark Jay Keasling
  6. Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China Jay Keasling
  7. DOE Agile BioFoundry, Emeryville, CA, USA Hector Garcia Martin
  8. BCAM,Basque Center for Applied Mathematics, Bilbao, Spain Hector Garcia Martin
  9. Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA Hector Garcia Martin & Aindrila Mukhopadhyay
  10. Advanced Biofuels and Bioproducts Process Development Unit, Emeryville, CA, USA Eric Sundstrom
  1. Jay Keasling